Chapter 3
Loaders and Linkers

December 16, 2010

@

Outline

e Basic Loader Functions

* Machine-Dependent Loader Features

* Machine-Independent Loader Features
e Loader Design Options

e Implementation Examples

Copyright © All Rights Reserved by Yuan-Hao Chang

Basic Loader Functions

December 16, 2010

@

Linker and Loader

Object program
— Contain translated instructions and data values from the source
program.

— Specify addresses in memory where these items are to be loaded.

* Three important processes to load an object program:
— Loading: Bring the object program into memory for execution.

— Relocation: Modify the object program so that it can be loaded at an
address different from the location originally specified.

— Linking: Combine two or more separate object programs and supply
information needed to allow references between them.

Copyright © All Rights Reserved by Yuan-Hao Chang

December 16, 2010

Linker and Loader (Cont.)

e Loader
— A system program performs the loading function.
— Some also supports relocation and linking.

* Some systems have a linker (or linkage editor) to
perform the linking operations and a separate
loader to handle relocation and loading.

e All the program translators (i.e., assemblers and
compilers) produce the same object program
format. Thus one system loader or linker can be
used regardless the original source programming
language.

Copyright © All Rights Reserved by Yuan-Hao Chang

December 16, 2010 6
HACOPY 00100000107A
TA0010001E14103348203900103628103030101548206130100300102A0C10390010‘ One byte
ThOOlOlEA15001036482061081033400000454F46000003000000 | character
T0020391E04103000103080205D30203ED8205D2810303020575490392C205E38203F Half-byte
TA00205?,\1C1\101036A400000AF1A001000A04l030AE02079A302064A509039ADC2079A2C1036
T002073073820644C000005 """"""""""""""""""""""""""""""""""""""
A A
0000 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
EAOOIOOU 0010 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
The Header record iS ﬁrSt OFFO XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
1000 14103348 20390010 36281030 30101548
checked. 1010 |20613C10 0300102A 0C103900 1oc10
: 1020 36482061 0810334C 0000454F 46000003
Then’ eaCh Text record IS read to 1030 000000xX XXXXXXXX XXXXXxxxx xxxxxxxx [+ COPY
memory.
When the End record is * *)) N
. 2030 XXXXXXXX XxXxxxxxx xx041030 O001030EO0
encountered, the loader jumps to 2040 [205D3020 3FD8205D 28103030 20575490
. e 2050 392C205E 38203F10 10364C00 O0OF10010
the specified address. 2060 (00041030 E0207930 20645090 39DC2079
2070 2C103638 20644C00 0005[xxxX XXXXXXXX
2080 XXXAXXXX XXXXXXXX XXXXXXXX XXXXXXXX

.
L
L]

December 16, 2010

@

Algorithm for an Absolute Loader

begin
read Header record
verify program name and length
read first Text record
while record type # 'E’ do
begin
{if object code is in character form, convert into
internal representation}
move object code to specified location in memory
read next object program record
end

jump to address specified in End record
end

Copyright © All Rights Reserved by Yuan-Hao Chang

December 16, 2010

@

Object Program Format

* In our object program, each byte of assembled code is given using its
hexadecimal representation in character form.
— E.g., The opcode for STL instruction would be represented by the pair of
characters “1” and “4”.

- When they are read by the loader, they occupy two bytes of memory and must be
stored in a singly byte with hexadecimal value 14.

- Each pair of bytes from the object program record must be packed together into
one byte during loading.

 This method of representing an object program is inefficient in terms of
space and execution time.

» Therefore, most machines store object program in a binary form: Each
byte of object code is stored as a single byte in the object program.

— The file and device conventions should not cause some of the object
program bytes to be interpreted as control character.

— E.g., Indicating the end of a record with a byte containing hexadecimal 00
would clearly be unsuitable for use with a binary object program.

« Obviously, object program stored in binary form do not lend themselves
well to printing or to reading by human beings. Therefore, we continue
to use character representations of object programs in this course.

opyright © All Rights Reserved by Yuan-Hao Chang

December 16, 2010

@

Simple Bootstrap Loader

* Bootstrap loader is a special type of absolute loader that
IS executed when a computer is first turned on or restarted.

* This bootstrap loads the first program to be run by the
computer — usually an operating systems.

* The bootstrap loader for SIE/XE:
— The bootstrap begins at address 0 in the memory of the machine.
— It loads the operating system starting at address 80.

— Because this loader is used in a unique situation (the initial program
load or the system), the program to be loaded can be represented in
a very simple format.

- Each byte of object code to be loaded is represented on device F1 as
two hexadecimal digits. (No Header record, End record, or control info.)

- The object code from device F1 is always loaded into consecutive bytes
of memory, starting at address 80.

- After loading, the bootstrap jumps to address 80 to execute loaded
program.

Copyright © All Rights Reserved by Yuan-Hao Chang

December 16, 2010 10

Bootstrap Loader for SIC/XE

“A” through “F”:
(hex 41 to 46)

“0” through “9”
(hex 30 to 39)

End-of-file;
hex 04

START BOOTSTRAP LOADER FOR SIC/XE

THIS BOOTSTRAP READS OBJECT CODE FROM DEVICE F1 AND ENTERS IT
INTO MEMORY STARTING AT ADDRESS 80 (HEXADECIMAL) . AFTER ALIL OF
THE CODE FROM DEVEF1 HAS BEEN SEEN ENTERED INTO MEMORY, THE
BOOTSTRAP EXECUTES A JUMP TO ADDRESS 80 TO BEGIN EXECUTION OF
THE PROGRAM JUST LOADED. REGISTER X CONTAINS THE NEXT ADDRESS
TO BE LOADED.

CLEAR A CLEAR REGISTER A TO ZERO
LDX #128 INITIALIZE REGISTER X TO HEX 80

LOOP JTSUB GETC READ HEX DIGIT FROM PROGRAM BEING LOADED
RMO A,S SAVE IN REGISTER S S & (A

SHIFTL s.,4 MOVE TO HIGH-ORDER 4 BITS OF BYTE
JSUB GETC GET NEXT HEX DIGIT

ADDR S,A COMBINE DIGITS TO FORM ONE BYTE A € (S)+(A)
STCH 0,X%X STORE AT ADDRESS IN REGISTER X

TIXR xX,X ADD 1 TO MEMORY ADDRESS BEING LOADED X < (X)+1;
J LOOP LOOP UNTIL END OF INPUT IS REACHED (X):(X)

SUBROUTINE TO READ ONE CHARACTER FROM INPUT DEVICE AND
CONVERT IT FROM ASCII CODE TO HEXADECIMAL DIGIT VALUE. THE
CONVERTED DIGIT VALUE IS RETURNED IN REGISTER A. WHEN AN
END-OF-FILE IS READ, CONTROL IS TRANSFERRED TO THE STARTING
ADDRESS (HEX 80) .

[GETC TD INPUT TEST INPUT DEVICE

JEQ GETC LOOP UNTIL READY
RD INPUT READ CHARACTER
COMP #4 IF CHARACTER IS HEX 04 (END OF FILE),
JEQ 80 JUMP TO START OF PROGRAM JUST LOADED
CcCOMP #48 COMPARE TO HEX 30 (CHARACTER '07)
JLT GETC SKIP CHARACTERS LESS THAN ‘07
SUB #48 SUBTRACT HEX 30 FROM ASCII CODE
COMP #10 IF RESULT IS LESS THAN 10, CONVERSION IS
JLT RETURN COMPLETE. OTHERWISE, SUBTRACT 7 MORE
sSUB H#7 (FOR HEX DIGITS ‘A" THROUGH 'F‘)

\ RETURN RSUB RETURN TO CALLER

INPUT BYTE X'F1-” CODE FOR INPUT DEVICE

END LOOP g

Machine-Dependent
Loader Features

December 16, 2010

Issues of Absolute Loaders

* On a larger and more advanced machine, we do
not know Iin advance where a program will be
loaded.

e Efficient sharing of the machine requires that we
write relocatable programs instead of absolute one.

* Write absolute programs makes it difficult to use
subroutine libraries efficiently.

— Most such libraries contain many more subroutines than
will be used by any one program.

—To make efficient use of memory, it is important to be
able to select and load exactly those routines that are
needed.

Copyright © All Rights Reserved by Yuan-Hao Chang

12

December 16, 2010

Machine-Dependent Loader Features

* Program relocation is an indirect consequence of
the change to larger and more powerful computers.

— The way relocation is implemented in a loader is also
dependent upon machine characteristics.

e Linking Is not a machine-dependent function, but it
nas the same implementation techniques for
oaders.

— The process of linking usually involves relocation of
some of the routines being linked together.

Copyright © All Rights Reserved by Yuan-Hao Chang

13

December 16, 2010

@

Relocation

 Loaders that allow for program relocation are
called relocating loaders or relative loaders.

* Two methods for specifying relocation in object
programs:

— Use Modification records.

- A Modification record is used to describe each part of the object
code that must be changed when the program is relocated.

- It is not well suited for use with all machine architectures.
E.g., SIC machine doesn’t not use relative addressing.
(Need too many Modification records.)

—Use direct addressing with relocation bits.
- It is suitable for machines that do not use relative addressing.

Copyright © All Rights Reserved by Yuan-Hao Chang

14

,mmmmmm—— =

Line number Machine address Label Instruction Operand Obiject code
S (aTaTuTe] | copy START 0 | Relocatable program
10 0000 FIRST STL RETADR 17202D
1z 0003 LDB #LEMGTH 69202D
L e e e - BaskE __ _ LENGTH __ _ _ - -
Fis 0006 CLOOP +JTSUB RDREC 4AB101036"
“Zg T T~ GODA - """ """~~~ Tom~~ "~ 7 CERGTH — " " v3ITo2E ~
25 000D COMP #0 290000
e 0010 _ _ oo dEQ _ _ _ _ FNDFIL _ _ _ _ _ ___ 232007 _
i 2 S 0ol3 o ISUE O WEREC o 2B1l0O105D,
EX am I 40 o017 T CLOOE IFZFEC
as 001A EMDFIL LD BEOF 032010
50 001D ST BUFFER OF2016
55 0020 LDA #3 010003
20 _ _ __0Q23 _ _ - _5TA ____ LEMGTH _ _ OEZ200D _
T &5 0026 +JISUB WRREC 48101050
P I v R+ T v - ¥ - A SRR = 5 = =3 4=\ 5 - 2 IEZ0037
PP 80 002D EOF BYTE C " EOF 454F46
LTI . e 95 0030 RETADR RESW 1
Use V100 0Q33 LEMGTH RESW 1
105 T BUFFER RESE 4096
L -) 110 .
MOdlflcatlon : 115 ; SUBROUTINE TO READ RECORD INTC BUFFER
1120 ;
records) 125 1036 RDREC CLEAR x B410
B -7 130 1038 CLEAR n B400
132 103a CLEAR s B440
133 103C +LDT #4096 FS101000
135 1040 RLOOP TD IMPLFT E32019
140 1043 TEQ RLOOP 332FFA
145 1046 RD INPUFT DB2013
150 1049 COMPR ALS AODA4
155 104E JTEQ EXIT Izzoo0s
160 104E STCH BUFFER, X 57C003
165 1051 TIXNR T B850
170 1053 JLT RLOOP IB2FEA
175 1056 EXTT ST LEMNGTH 134000
180 1059 RSUE AF0000
185 105C THNPITT BYTE M "FL1l- F1l
195 .
200 . SUBROUTINE TO WRITE RECORD FROM BUFFER
205 .
210 105D WRREC CLEAR b4 B410
212 105F LDT LEMNGTH 774000
215 1062 WLOOP D OUTPUT E32011
220 1065 TEQ WLOOP II2FFA
225 1068 LIDCH BUFFER, X 53C003
230 106E WD OUTPUT DFZ2008
235 106E TIXR T BE250D
240 1070 JLIT WLOO P 3BZFEF
245 1073 RSUB 4AF0000
250 1076 OUTPUT BYTE X 05" 05
255 EIry FIRST

15

December 16, 2010 16

@

Example (Cont.)

'HCOPY 000000001077
;TOOOOOOIDI7202D69202D4B1010360320262900003320074B10105D3F2FECO32010
;TOOOOlDl3OF20160100030F200D4Bl0105D3E2003454F46
ET001036lDB4103400344075101000E32019332FF5PBZO13A004332008570003B850
;T0010531D332FEA1340004F0009@»@419]74009@32015@32FF%€3COO%@F200§@850:
ET00107007332FEF4F000005 '

4poooo7os+copY
0000“05*00” , ‘_Modlflcatlon records~
0_9_99?_79_5_f99_1_’_¥_ . for+JsuB
gqpooooo

Copyright © All Rights Reserved by Yuan-Hao Chang

Line number Machine address Label Instruction Operand Object code 17

| 5 1000 COPY START Starting address |
10 1000 FIRST STL RETADR 141033 |
.15 1003 CLOOP JSUB RDREC 482039 !
. 20 1006 DA LENGTH 001036 !
25 1009 COMP ZERO 281030 !
. 30 1c0C JTEQ ENDFIL, 301015 !
. 35 100F JSUB WRREC 482061 !
. 40 1012 J CLOOP 3C1003 !
' 45 1015 ENDFTIL LDA EOF 00102A !
' 50 1018 sTA BUFFER 0C1039 !
155 101B DA THREE 00102D :
: 60 101E STA LENGTH 0C1036 :
L65 1021 JTSUB WRREC 482061 :
7O . 1024 LDL. RETADR 081033 __ ;
W75 1627 _____________________RSUB____________________ PC & (L)____acoooo_| ;
_________________ 1 80 102Aa EOF BYTE C’ EOF * 454F46 | :
" N N 85 102D THREE WORD 3 000003 .
Example for © .20 1030 ______ZERO ________ WORD O 000000 _ |
! 1 95 1033 RETADR RESW 1 \
re|ocati0n E E 100 1036 LENGTH RESW 1 E
! | 105 1039 BUFFER RESB 4096
i | . 110 . !
bItS (SIC I L 115 . SUBROUTINE TO READ RECORD INTO BUFFER |
i | ;120 . !
. I\/IaChme) A L a1z2s 2039 RDREC LDX ZERO 041030 !
Toommmmmmmmmmmmme e - ''130 203C LDA ZERO 001030 !
: 135 Z203F RIL.OOCP TD INpPuU™T EC205D :
' 140 2042 JTEO RLOOP 30203F :
: 145 2045 RD INPUT Dgigglg :
" A50 2048 COMP ZERO 2 |
155 2048 TEQ EXIT 302057
160 204E= ST CH BUFFER, X 549039 |
5165 2051 TTIX MAXTLEN 2C205E E
170 2054 JLT RLOOP 38203F |
. 175 2057 EXIT sSTX LENGTH 101036 |
. 180 205a RSUB 4C0000
/”_""'. """"""" R E 185 205D INPUT - BYTE X*F1l”’ F:I(SjL ° E
1
: BeglnaneW E E:ngg 205E MAXLEN WORD 4096 (o] cO0 :
: v T CORD FROM BUFFER |
__Textrecord ', 292 : SUBROUTINE O WRITE RECORD FROM) ;
““““““““““““ S il210 2061 WRREC _____IDX_ ________zZERO ________________ 041030 !
L 215 2064 WLOOP TD ouUTPUT EOC2079 ;
1 220 2067 JEQO WLOOP 302064
: 225 206A LIDCH BUFFER, X 509039 :
: 230 206D wD ouUTpPuUT DC2079 :
| 235 2070 TIX LENGTH 2c1036 :
L 240 2073 JLT WLOOP 382064
' 245 2076 RSUB 4C0000 :
| 250 2079 ouUTPUT BYTE X 05" 05
!]

December 16, 2010

;’/Example for ‘; “Bit mask: 1: program’s starting address
. relocation i Each relocation bit is . needs to be added to this word.
bits (SIC | . associated with each word of | 0: No need to be addedd.
__M__é_c_h_'_r_@__ / . ObjeCt geme. 7 No modification is

HCOPY 00000000107A _needed for RSUB.

Data content No

ET00001E15E0000003648106l0800334C000045hF46000003000099

5T001039lEFFCO40030000030E0105D30103FD8105D2800303010575480392C105E38103F
;T0010570A800100036400000F1001000 '

;T00106119EE0040030£0}07939}0645089313“91ﬂ792C00363810644C000005
' N Tt were' placed in the precelling 1" -

5 EOOOOOO Text record, it would not be

properly gllgntad to correspond to byte segment of object
a relocation bit because of the 1- code e et record

‘__ byte datavalue from Line 185. .~ it

e Each relocatlon bit is
i--____f_‘_‘:::; associated with a 3-

—————————————————————————————

18

"__moadification is needed '

December 16, 2010

Program Linking

 Control sections could be assembled together, or
they can be assembled independently of one
another.
— The programmer has a natural inclination to think of a

program as a logical entity that combines all of the
related control sections.

— The loader has no such thing in this sense:

- There are only control sections that are to be linked, relocated,
and added.

- The loader has no way of knowing which control sections were
assembled at the same time.

Copyright © All Rights Reserved by Yuan-Hao Chang

19

December 16, 2010 20

0000 PROGA START 0 ' HPROGA 000000000063
EXTREF LISTB, ENDB, LISTC, ENDC 'DLISTA D0004CENDA 000054
' ' ' 'RLISTB ENDB LISTC ENDC
) A A A
. K
0020 REF1 LDA LISTA 03201D |
ey e 77100004, T0000200A03201D77100004050014
0027 REF3 LDX HENDA-LISTA 050014 ¢
: i_'_rAO_Q_QQ_.QﬁAQFQ@_QQ_!_&FFFFF600003F00001!oFFFFCO
- * "MD0002405+LISTE |
e "MD00054, 06+LISTC .
I {MD00057,06+ENDC |
0054 ENDA EQU * L ._9._9._Q.§._7 QQ:._.L-._L_S._ZLQ._._;
0054 REF4 WORD ENDA-LISTA+LISTC 000014 :' 0005 6A+ENDC !
0057 REF5 WOED ENDC-LISTC-10 FFFFF6 | - |
005A REF6 WORD ENDC-LISTC+LISTA-1_ ___ 99_0_(13113'_,:' gggg +;;gg§ :
005D REF7 WORD ENDA-LISTA- (ENDB-LISTR) 000014 H,D @D 4:
0060 REF8 WORD LISTB-LISTA FFFFCO P;\bUOOSDbfo ENDB
L B REF1 . e J.__QQ_QQ_QPO_G*:L_I__S_?_E_J
T-.. 1MP00060 'E-FL'i'S"'I'E";
4@0006006 PROGA |
:"EGUOUQ'O """"""

Copyright © All Rights Reserved by Yuan-Hao Chang

December 16, 2010 21

" LISTC = PROGC + 0030
= 40E2 + 0030 = 4112

__

HPROGB 00000000007F
DLISTB O00O060ENDB 000070

EXTDEF LISTB, ENDB
RLISTA ENDA ,LISTC ENDC

EXTREF LISTA,ENDA,LISTC, ENDC

1
|

|

|

|

|

1

[
]
|
|
1
|
1
1
|
|
|

TDDUG3Q,\GEAGEIDUUGDh??ZUZ?hDSIBUUDO

M MP0007CO! YPROCB
! nunﬂ?0ﬂ§ LISTA

0036 REF1 +LDA LISTA 03100000 ' "
003A REF2 LDT LISTB+4 772027 .
003D REF3 +LDX #ENDA-LISTA 05100000 TU_QQQ_?_Q.E]FD_QQ_QQ&FFFFFGAFFFFFFFFFFFq‘ﬂﬂﬂUGG
: 0000370. ﬁLliI&J
qpﬂﬂﬂzE,pﬂEnm
. MDOOO3E05-LISTA |
0060 LISTBE BU . (00007006+ENDA |
: 0007006~LISTA |
0070 ENDB EQU * ; .%QQ_T_ Qﬁt_l-_l_ﬁ_T_El_-ﬂ:
0070 REF4 WORD ENDA-LISTA+LISTC 000000 | M0 “ﬂ; ?"’EHDC :
0073 REF5 WORD ENDC-LISTC-10 FFFFFe | MO000 LISTC ,
0076 REF6 WORD ENDC-LISTC+LISTA-1 FFFFFF MD0O007606FENDC |
0079 REF7 WORD ENDA-LISTA- (ENDB-LISTB) FFFFFO Uﬂﬂ?gf.‘j 6-LISTC |
007C REF8 WORD LISTB-LISTA 000060 .MD0OO007606+LISTA |
END el ' 000790 +EHDA |

Copyright © All Rights Reserved by Yuan-Hao Chang

December 16, 2010 22

0000 PROGC ~ START 0O ROGC 000000000051

EXTDEF ~ LISTC, ENDC ' DLISTC 000030ENDC 000042
EXTREF LISTA, ENDA, LISTB, ENDB ' RLISTA ENDA LISTB ENDB

T0000180C031000007710000405100000

0018 REF1 +LDA LISTA 03100000 E .
001C REF2 +LDT LISTB+4 77100004 |
0020 REF3 +LDX #ENDA-LISTA 05100000'_Tnﬂﬂﬂﬁ;pgpnuniqpnuUquauo1;puunnnnuunnu
: M00001905+LISTA
MO00O01DOS+LISTE.
§g0002105+nnna !
0002105-LISTA'

0030 LISTC EQU *
. MO0004206+ENDA !

0004206-LISTA!

- e T o} — —————

0042 ENDC EQU * M00004206+PROGC!
0042 REF4 WORD ENDA-LISTA+LISTC 000030 | MOO004BOEFLISTA,
0045 REF5 WORD ENDC-LISTC-10 000008 000&306+EHDA :
0048 REF6 WORD ENDC-LISTC+LISTA-1 000011 Hgﬂﬂﬁ4’b ~LISTA,
004B REF7 WORD ENDA-LISTA- (ENDB-LISTB) 000000 0004 U? ENDB |
004E REF8 WORD LISTB-LISTA 000000 ___Qﬂﬂigg_tLlﬁil

END MO0004EQ6+LISTB!

-- 1_ﬂ$ﬂﬂQ£E06_LLSIA'

__

Copyright © All Rights Reserved by Yuan-Hao Chang

@

December 16, 2010

Relocation and Linking on REF4 from

PROGA

w 4050#000000000 004126|eeeeeeccccee

0000

(REF4)

+HrPi4112
__66:1_'{

23

Control

Section Symbol hame Address Length

PROGA 4000 0063
LISTA 4040
ENDA 4054

PROGB 4063 007F
LISTB 40C3
ENDB 40D3

PROGC 40E2 0051
LISTC 4112
ENDC 4124

ESTAB

i "LISTC = PROGC + 0030
= 4OE2 + 0030 = 4112

PROGA |HPROGA oo
_____________________ . (REF4)
'ENDA: 4054 | (000530FD00014) ++++
LISTA: 40404+ 1
ME0005306 +CISTO
Program is loaded . |
starting at address : }
4000. . :
PROGC | HPROGO ¢ ¢/
i
// | nCEToho0030—-
/ |
/
/
/
{ PROGA 004000
\\ PROGB 004063
N \EROGS 0040E2
0054 REF4 WORD

December 16, 2010

Program Linking Example after Linking
and Loading

REF1

(PC relative)

gggtti?r: Symbol name Address Length
0000 XXXXXXXX XXXXXX XXXXXXXX XXXXXXXX PROGA 4000 0063
. . . ® LISTA 4040
d ENDA 4054
L] L] L] [] L]
3FF0 xxxxx XXXXXXXX XXXXXXXX XXXXXXXX PROGB 4063 007F
4000 - & ® . " "0 L I I B B B . e 8 " " 000 ® 8 8 " 00 0 LISTB 40C3
4010 ‘ ENDB 40D3
so50 [RNT 10A0CTOS OOM--e niiiiiiiTPROGAIBROGS
4040 |..... oTe i
REFA goso .07 i [00412600 00080040 51000004
4060 000083 +eveoere oovesnos cececene
G070 [eeeroves toveenee eesnener seseeans ESTAB
4080 . s & 0 00 e . " 8 e . " ® 00 . &8 8 " 8 0 -~
4090 cesesses seessess +4031040 40p720274—PHOGB ” REF1
40A0 05100014 .seveveee osossssss ssssssns (extendedformat)
40BO ceececses seecsecs ssesess e« esssssses
aoco . 8 " & " 0 8 [N N B B BN | . " 8 " 8 0 B8 * " 8 " 0
40D0 cee...00 41260000 08004051 00000400
40EO0 0083.... cesssenae cessenss cesssess
40F0 . 8 " 8 808 . " " " 80 80lOBIO 40&0'7710
4100 40C70510 00l4.uee vevweesse ocoeese.. «—PROGC
4110 & & & & & & & 8 LN) - & & 8 8 8 80 L B B B B BN)
4120 eseceess | 00412600 00080040 51000004
4130 00008§]xx XXXXXXXX XXXXXXXX XXXXXXXX
4140 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
L] L [] L]
L] L] L] [] L
L] L] [] L] L]

Copyright © All Rights Reserved by Yuan-Hao Chang

December 16, 2010

@

Instruction Operand Calculation

 For the references that are instruction operands, the
calculated values after loading do not always appear to be
equal.

— This is because there is an additional address calculation step
iInvolved for program-counter relative (or base relative) instruction.

— In these cases, it is the target addresses that are the same.

— For example:

- In PROGA, the reference REF1 is a PC relative instruction with
displacement 01D. When this instruction is executed, the program
counter contains the value 4023. (TA = 4023 + 01D = 4040)

- No relocation is needed for this this instruction because the PC will
always contains the actual address of the next instruction.

- This is considered as relocation at execution time automatically through target
address calculation.

- In PROGB, reference REF1 is an extended format instruction that
contains a direct address. This address (after linking) is 4040.

Copyright © All Rights Reserved by Yuan-Hao Chang

25

December 16, 2010 26

@

External Reference Issue in Linking Loaders

* The input to a loader consists of a set of object programs
(i.e., control sections) that are to be linked together.

— In a control section, external reference to a symbol whose definition
does not appear until later in this input stream (.i.e., other control
sections).

— In such a case, the required linking operation cannot be performed
until an address is assigned to the external symbol (i.e., until the
later control section is read).

 In order to resolve the address of external references, a
linking loader usually makes two passes over its input.

— Pass 1: Assign address to all external symbols.
— Pass 2: Perform the actual loading, relocation, and linking.

Copyright © All Rights Reserved by Yuan-Hao Chang

December 16, 2010

@

Data Structure for Linking Loader

« External symbol table (ESTAB) is the main data
structure needed for the linking loader.

— It is to store the name and address of each external
symbol.

—Itis similar to SYMTAB in the assembler.
— It indicates in which control section the symbol is defined.
— A hash organization is typically used for this table.

— Two variables are defined:

- PROGADDR (program load address):

- Indicate the beginning address in memory where the linked program is
to be loaded. Its value is supplied to loader by the operating system.

- CSADDR (control section address):

- Contain the starting address assigned to the control section currently
be|ng Scanned by the Ioader- Copyright © All Rights Reserved by Yuan-Hao Chang

27

December 16, 2010

@

Pass 1 of Linking Loader

 In Pass 1, the loader is concerned only with Header and
Define record types in the control sections.

— Initialization:
- The beginning load address for the linked program (PROGADDR) is
obtained from the operating system.
- This becomes the starting address (CSADDR) for the first control
section in the input sequence.

— Record scanning:
- The control section name from the Header record is entered into
ESTAB, with value given by CSADDR.
- All external symbols appearing in the Define record for the control
section are also entered into ESTAB.

- External symbols’ addresses are obtained by adding the value specified
in the Define record to CSADDR. (specified address + CSADDR)

- When End record is read, the control section length CSLTH (obtained
from Header record) is added to CSADDR to calculate the starting
address for the next control section. (CSADDR = CSAADR + CSLTH)

Copyright © All Rights Reserved by Yuan-Hao Chang

28

@

December 16, 2010

Pass 1 of Linking Loader (Cont.)

* At the end of Pass 1, ESTAB contains all external symbols defined in the set of

control sections together with the address assigned to each.

* Many loaders include as an option the ability to print a load map that shows
these symbols and their addresses.

— This information is useful in program debugging.

* The following table is the ESTAB of the previous example at the end of Pass 1.

gggttiz)or: Symbol name Address Length

PROGA 4000 0063
LISTA 4040
ENDA 4054

PROGB 4063 007F
LISTB 40C3
ENDB 40D3

PROGC 40E2 0051
LISTC 4112
ENDC 4124

Reserved by Yuan-Hao Chang

29

December 16, 2010 30

begin
get PROGADDR from operating system

set CSADDR to PROGADDR {for first control section}

while not end of input do // Each iteration processes one control

begin , section _
read next input record {Header record for control section}

Algorithm
for Pass 1

| set CSLTH to control section length
E search ESTAB for control section name /I Header record
5 if found then

! set error flag {duplicate external symbol}

! else

enter control section name into ESTAB with value CSADDR

while record type # 'E’ do

begin
gontrol Symbolname Address | Length if record type = ‘D’ then // Define record
PROGA 4000 0063 for each symbol in the record do
LISTA 4040 .
ENDA 4054 begin
search ESTAB for symbol name
PROGB 4063 007F .
LISTB 40C3 if found then
ENDB 40D3 set error flag (duplicate external symbol)
PROGC 40E2 0051 else
LISTC 4112 enter symbol into ESTAB with value
ENDC 4124 . .
(CSADDR + indicated address)

end {for}
end {while # 'E’} [/ reach End record
add CSLTH to CSADDR {starting address for next control section}
end {while not EOF}
end {Pass 1}

__

Copyright © All Rights Reserved by Yuan-Hao Chang

read next input record

December 16, 2010

@

Pass 2 of Linking Loader

In Pass 2, loader performs the actual loading,
relocation, and linking of the program.

— CSADDR is used in the same way as it was in Pass 1.

- It always contains the actual starting address of the control
section currently being loaded.
— As each Text record is read, the object code i1s moved
to the specified address plus the current value of
CSADDR. (specified address + CSADDR)

—When a Modification record is encountered, the symbol
whose value is to be used for modification is looked up in
ESTAB.

- This value is then added to or subtracted from the indicated
location in memory.

Copyright © All Rights Reserved by Yuan-Hao Chang

31

December 16, 2010

* The last step of Pass 2 is to transfer control to the
loaded program to begin execution.

—The End record for each control section may contain the
address of the first instruction in that control section to be
executed.

— Two scenarios could be encountered:

- 1. If more than one control section specifies a transfer address,
the loader arbitrarily uses the last one encountered.

- 2. If no control section contains a transfer address, the loader
uses the beginning of the linked program (i.e., PROGADDR) as
the transfer point.

—Normally, a transfer address would be placed in the End
record for a main program, but not for a subroutine.

Copyright © All Rights Reserved by Yuan-Hao Chang

32

December 16, 2010 33

begin
set CSADDR to PROGADDR
set EXECADDR to PROGADDR
while not end of input do
begin // Each iteration processes one control section
read next input record {Header record}
set CSLTH to control section length
while record type #= ‘'E’ do
begin
read next input record
if record tyvpe = ‘T’ then // Text record
begin
{if object code is in character form, conwvert
into internal representation}
= r] mowve object code from record to location
/\Ig}()rlt rT] (CSADDR + specified address)
end {if 'T'}
for Pass 2 eise if recora type - ‘m- thnen // Modification record
begin
search ESTAB for modifying symbol name
if found then
add or subtract symbol value at location
(CSADDR + specified address)

else
set error flag (undefined extermnal symbol)
end {if ‘M’ }
end {while # "'E’}
if an address is specified {in End record} then
set EXECADDR to (CSADDR + specified address) [/ End record: transfer
add CSL/TH to CSADDR . o
end —(while mot Tom /I Move to next CS address is specified
Jump to location given by EXECADDR {to start execution of loaded program)
end {Pass 2}

Copyright © All Rights Reserved by Yuan-Hao Chang

December 16, 2010

@

Advanced Method for External Symbols

* We can assign a reference number to each external
symbol referred to in a control section.

» This reference number is used in Modification records.
*E.Q.,

— Control section name with reference number 01.

— The other external reference symbols are assigned numbers as
part of the Refer record for the control section.

* The main advantage of this reference-number mechanism
IS that it avoids multiple searches of ESTAB for the
same symbol during the loading of a control section.

— An external reference symbol can be looked up in ESTAB once for
each control section that uses it.

— The value for code modification can then be obtained by simply
Indexing into an array of these values.

Copyright © All Rights Reserved by Yuan-Hao Chang

34

December 16, 2010 35

Advanced Method for External Symbols

(PROGA)

,q{noca 000000000063
' DLISTA QOO04OENDA 000054
:g@ISTB ENDB LISTC ENDC

"ﬁj‘p‘ f)'d{')'i'z. 05+LISTB |

i T0000200A03201D77100004050014

TOOOUS&OFGOUOI4FFFFF600003F000014FFFFCO

0005A06+ENDC
0005A06-LISTC
MO0005A06+PROGA

qp0005nbe -ENDB
00005D06+LISTB

"MD0006006FLISTB
:qpoooeoos -PROGA

HPROGA 000000000063
DLISTA 000040ENDA 000054

% LISTB 03ENDB QiLISTC O5ENDC

T0000200A03201D7?100004050014

,0000540E000014FFFFF600003F000014FFFFCO
oooozaoﬁloz
00005406+0a
;u90005706+05
'M00005706-04
npooosa06+05
M00005406-04
MO0005A06+01 |
'M00005D06,-03 |
MO0005D06+02 |

iﬁi?a oo

00006006402 |
'M00006006-01 |
'E000020 |

__

Copyright © All Rights Reserved by Yuan-Hao Chang

December 16, 2010 36

Advanced Method for External Symbols
(PROGB)

——

HPROGB 00000000007F HPROGB 00000000007F
DLISTB 000060ENDB 000070 DLISTB ,000060ENDB 000070
RLISTA ENDA ,LISTC ENDC RO2LISTA Q3ENDA Q4LISTC QSENDC

1

1

1

1

1

1

|
.
.
1
1
1
1
1
1
1
1
1

T0000360B0310000077202705100000

T0000700F000000FFFFF6FFFFFEFFFFF0000060

Th00003q\03ﬂ03lﬂ000ﬂﬁ??202‘{,\05100000

00037,05+LISTA M00003705+02
I MD0003EQS+ENDA M00003E054+03
| MDOOO03EQS5,-LISTA M00003E05-02

0007006+ENDA

0007006-LISTA 00070,06-02

MD0007006+LISTC Eﬁouu?gbdlaa

H0005 Tocrmmne M00007 306405

0007306-LISTC M00007306-04

; M000070,06403 ;

GUB?(’;@&+EHDC 00007606+05

0007606-LISTC 0007606-04
%9_.@93_.6" 606+ LISTA. M0000760602
! 0007906+ENDA 0007906+03
| MD0007906-LISTA_ 000790602
T M00007 GO6+PROGB 400007 G0 +01
0007 ¢0d LIS A | %00007 GO 6
| E

__

Copyright © All Rights Reserved by Yuan-Hao Chang

December 16, 2010

Advanced Method for External Symbols

(PROGC)

| HPROGC 000000000051
' DLISTC QO0030ENDC 000042

. RLISTA ENDA LISTB LENDB

T0000180C031000007710000405100000

LY]

TD&UDQZ,Q ﬂﬂﬂﬂiq‘ﬂﬂﬂﬂﬂgﬂﬂﬂﬂlIKOUDDUGGGGBGU E

PLGU0'01905+LISTAI !

M00001DO5+LISTB . :
0002105+ENDA

9.:19;_%9_5’ ~LISTA| |

" MD0004306+ENDA |
: uooaib€1L15Ta.
| 200004 206+PROGC]
rn 0004806+ LISTA
0&0&806+ENDA
qgﬂooa BO6-LISTA
0004B06-ENDB !
ounagpélLlsrx.

upuuoaqpﬁ+LISTBu
! uunuaaoe LISTA!

__

ROGC 000000000051
DLISTC ,00003GENDC 000042
RO2LISTA O3ENDA Q4LISTB QSENDB

T0000180C031000007710000405100000

fa)

T0000420F000030000008000011000000000000 |
M00001905+02 :
M00001D05+04 5
MP0002105+03 |
00002105-02 :
MP0004206+03 5
0004206-02 ;
0004206401 :
0004806+02 :
0004B064+03 :
gguooagpﬁ 02 5
M00004B06,-05 !
M00004B06+04 :
ggaoonﬁ 06+04 5
00&4@9@—02 !

Copyright © All Rights Reserved by Yuan-Hao Chang

37

Machine-Independent
Loader Features

December 16, 2010

@

Automatic Library Search

* Many linking loaders can automatically incorporate routines
from a subprogram library into the program being loaded.

— In most cases, there is a standard system library that is used In
this way.

— Other libraries may be specified by control statements or by
parameters to the loader.

« Automatic library search allows programmer to use
subroutines from one or more libraries.

e The programmer does not need to take any action beyond
mentioning the subroutine names as external references in
the source program.

Copyright © All Rights Reserved by Yuan-Hao Chang

39

December 16, 2010 40

@

Automatic Library Search (Cont.)

e Linking loaders must keep track of external symbols that
are referred to (but not defined) in the primary input to the
loader.

— 1. Symbols from each Refer record are entered ESTAB.

— 2. When the definition for a symbol is encountered, the address
assigned to the symbol is filled | to complete the symbol entry.

— 3. At the end of Pass 1, the symbols in ESTAB that remain
undefined represent unresolved external references.

— 4. The loader searches the libraries specified for routines that
contain the definitions of these symbols.

— 5. The loader then processes the subroutines found by this search
exactly as if they had been part of the primary input stream.

* The subroutines fetched from a library may themselves
contain external references. It is necessary to repeat the
library search process until all references are resolved.

Copyright © All Rights Reserved by Yuan-Hao Chang

December 16, 2010

@

Automatic Library Search (Cont.)

e Automatic library search allows programmers to
override the standard subroutines in the library by
supplying his or her own routines.

* For example:

— Suppose that the main program refers to a standard
subroutine name SQRT.

— A programmer who wanted to use a different version of
SQRT could simply include the new SQRT as input to
the loader.

— By the end of Pass 1 of the loader, SQRT would already

be defined, so the original SQRT would not be included
In any library search.

Copyright © All Rights Reserved by Yuan-Hao Chang

41

December 16, 2010

@

Automatic Library Search (Cont.)

 The libraries to be searched by the loader ordinarily contain
assembled or compiled versions of the subroutines (i.e.,
object code).

— It is possible to search these libraries by scanning the Define
records for all of the object programs in the library, but it is lack of
efficiency.

— In most cases, a special file structure is used for the libraries:

- This structure contains a directory that gives
- The name of each routine and
- A pointer to its address within the file.

— If a subroutine is callable by more than one name (using different
entry points), both names are entered into the directory.

— The library search itself involves
- 1) a search of the directory, followed by
- 2) reading the object programs indicated by this search.

— If the directory could be stored in memory, the search process could
be accelerated.

Copyright © All Rights Reserved by Yuan-Hao Chang

42

December 16, 2010

@

Loader Options - Special Command
Language

* Many loaders have a special command language that is
used to specify options.

— Sometimes there is a separate input file to the loader that contains
such control statements.

— Sometimes these same statements can also be embedded in the
primary input stream between object programs.

— On a few systems, the programmer can even include loader control
statements in the source program, and assembler or compiler
retains these commands as a part of the object program.

* Note: Some systems use job control language that is
processed by the operating system.

— When this approach is used, the OS incorporates the options
specified in a control block that is made available to the loader
when it is invoked.

Copyright © All Rights Reserved by Yuan-Hao Chang

43

December 16, 2010

Loader Options — Alternative Sources

* One typical loader option allows the selection of

alternative sources of input. ..

" Direct the loader to read the

e FOr exam ple: designated object program from
a library and treat it as if it were

DG DS G IR (Iibrary-name)‘{'\ art of the primary loader input.

:._-:;;::::::jji,""Allow users to delete the named control
DELETE csect-name i sections.
CHANGE name 1, name2 -~ . Change the external gymbol fror_n namel
- to name2. whenever it appears in the
_......objectprogram.

Copyright © All Rights Reserved by Yuan-Hao Chang

44

December 16, 2010

Loader Options - Example

e Suppose that a set of utility subroutines is made
available on the computer system.

— Two of these (READ and WRITE) are designed to
perform the same functions as RDREC and WRREC.

— The following sequence of loader commands could be
used to make this change without reassembling the

program.
INCLUDE READ(UTLIB) "Change external references |
INCLUDE WRITE(UTLIB) : to RDREC to refer to symbol
DELETE RDRED, WRREC/’,:;:Z//«\READ. /

CHANGE RDREC, READ
CHANGE WRREC, WRITE

Copyright © All Rights Reserved by Yuan-Hao Chang

45

December 16, 2010

@

Loader Options — Non-Resolved External
References

* Loaders might allow uses to specify that some references not be
resolved.

* For example:

— A certain program can perform an analysis of the data using the routines
STDDEV, PLOT, CORREL from a statistical library.

— Since the program contains external references to these three routines, they
are ordinarily loaded and linked with the program.

— If it is known that the statistical analysis is not to be performed in a particular
execution of this program, the user could include a command such as:

NOCALL STDDEV, PLOT, CORREL

to instruct the loader that these external references are to remain
unresolved.

 This avoids the overhead of loading and linking the unneeded routines,
and saves the memory space that would otherwise be required.

Copyright © All Rights Reserved by Yuan-Hao Chang

46

December 16, 2010

@

Loader Options — Other Options

* It Is also possible to specify that no external references to
be resolved by library search.

— This option is useful when programs are to be linked but not
executed immediately.

— It is desirable to postpone the resolution of external references in
some cases. (e.g., dynamic linking)

 Other options:

— The abillity to output load map that shows the detailed information
(e.g., control section names, addresses, external symbol addresses,
cross-reference table) during loading.

— The ability to specify the location at which execution is to begin
overriding any information given in the object programs.

— The ability to control whether or not the loader should attempt to
execute the program if errors detected during the load (e.g.,
unresolved external references)

Copyright © All Rights Reserved by Yuan-Hao Chang

47

Loader Design Options

December 16, 2010 49

Loader Design Options

 Linkage editors
— Perform linking prior to load time.

e Dynamic linking
— Link functions at execution time.

e Bootstrap loaders

— Loaders that can be used to run stand-alone programs
Independent of the operating system or the system
loader.

Copyright © All Rights Reserved by Yuan-Hao Chang

December 16, 2010

@

Linkage Editors

 The linkage editor produces a linked version of the program (called a
load module or an executable image) that is written to a file or library for

later execution.

* When the user is ready to run the linked program, a simple relocating
loader can be used to load the program into memory.

— The only object code modification is the addition of an actual load address
to relative values within the program.

» The linkage editor performs relocation of all control sections relative to
the start of the linked program.
— Thus, all items that need to be modified at load time have values that are
relative to the start of the linked program.

— This means that the loading can be accomplished in one pass with no
external symbol table required.

- All external references are resolved, and relocation is indicated by
Modification records or a bit mask.

 Information concerning external references is often retained in the
linked program to allow subseguent relinking of the program to
replace control sections, modify external references.

Copyright © All Rights Reserved by Yuan-Hao Chang

50

December 16, 2010 51

@

Linking Loader vs. Linkage Editor'

 Linkage editor is preferred when
— A program is to be executed many P

Object
program(s)

times without being reassembled.
. . : Link
« Linkage editor resolves external Library f=b1 = itor
references and searches library
once -

Object
e Linking loader is preferred when
— A program is reassembled for near

>
Linked
program
o every execution. (durin
Library 2 Linking y (g

loader development and testing phase) Relocating

:) ; — A program is used so infrequently.
. Linking loader searches libraries and l
Y resolves external references every Memory
time the program is executed.
Linking Loader Linkage Editors

Copyright © All Rights Reserved by Yuan-Hao Chang

December 16, 2010

@

Linkage Editors — Subroutine Replacement

* If the actual address at which the program will be loaded is known in
advance, the linkage editor can perform all of the needed relocation.

 Linkage editors can replace existing subroutines without going back to
the original versions of all other subroutines.
— Consider a program (PLANNER) that uses a large number of subroutines.

— One subroutine (PROJECT) used by the program is changed to correct an
error or to improve efficiency.

INCLUDE PLANNER(PROGLIB)

DELETE PROJECT {DELETE from existing PLANNER}
INCLUDE PROJECT(NEWLIB) {INCLUDE new version)

REPLACE PLANNER(PROGLIB)

Copyright © All Rights Reserved by Yuan-Hao Chang

52

@

December 16, 2010 53

Linkage Editors — Building Packages

A search of SUBLIB before

« Linkage editors can be used to build packages of ~ FTNLIB would retrieve FTNIO

subroutines or other control sections that are used !Nstead of the separate routines.
together. FINTO already has all cross-

references between subroutines

* For example: resolved.

In FORTRAN, there are a large number of subroutines that
are used to handle formatted input and output:

- Read and write data blocks (READR, WRITER) N CLUDE" EERETE)

- Block and deblock records (BLOCK, DEBLOCK) INCLUDE WRITER(FTNLIB)

- Encode and decode data items (ENCODE, DECODE) INCLUDE BLOCK(FTNLIB)
There are a large number of cross-references between these INCLUDE DEBLOCK (FTNLIB)
subprograms because of their closely related functions. INCLUDE ENCODE(FTNLIB)

: : : INCLUDE DECODE(FTNLIB
If a program using formatted I/O were linked in the usual way ()

all of the cross-references between these library subroutines
would need to processed individually. (every time a _
FORTRAN program is linked) SAVE FTNIO(SUBLIB)

The linkage editor could combine the appropriate ik enhral finec infa B

: . L L|nk subroutlnes into
subroutines into a package to reduce linking overheads. the ETNIO.

Copyright © Al R|ghts Reserved by Yuan-Hao Chang

December 16, 2010 54

@

Linkage Editors — Building Packages (Cont.)

 Linkage editors often allow the user to specify that external
references are not to be resolved by automatic library
search so as to reduce library space.
— E.g., If 100 FORTAN programs using the above I/O routines have

their external references resolved, this would mean that a total of
100 copies of FTNIO would be stored.

- Thus external references between user-written routines would be
resolved.

- A linking loader could then be used to combine the linked user routines
with FTNIO at execution time.

— Because this process involves two separate linking operations, it
would have more overheads, but save a lot of library space.

* In general, linkage editors ten to offer more flexibility and
control, with a corresponding increase in complexity and
overhead.

Copyright © All Rights Reserved by Yuan-Hao Chang

December 16, 2010

@

Dynamic Linking

e Linking types:
— Linkage editors
- Perform linking operations before the program is loaded for execution.
— Linking loaders
- Perform the linking operations at load time.
— Dynamic linking (dynamic loading or load on call)
- Postpone the linking operations until execution time.

e Dynamic linking is often used to allow several executing
programs to share one copy of a subroutine or library.

— E.g., run-time support routines for a high-level language like C could
be stored in a dynamic link library.
- A single copy of the routines could be loaded into memory.
- All programs currently in execution could be linked to this one copy.

* In an object-oriented system, dynamic linking is often
used for references to software objects.

Copyright © All Rights Reserved by Yuan-Hao Chang

55

December 16, 2010

Dynamic Linking (Cont.)

e Dynamic linking provides the abillity to load the
routines only when they are needed.

— If the subroutines involved are large, or have many
external references, this can result in substantial savings
of time and memory space.

* Dynamic linking avoid the necessity of loading the
entire library for each execution. E.g.,:
— Suppose that a program uses only a few out of a large
number of possible subroutines, but the exact routines

needed can not be predicted until the program examines
Its input.

Copyright © All Rights Reserved by Yuan-Hao Chang

56

December 16, 2010 57

OS el s Wi necessary, the i "Return to OS,
S [- routine is loaded from | and then back to i
_the specified I|brary ! \the program. '

P i

O o

-

"/’// ‘\‘ II’ *
"’ Dynamic \,
loader : Dynamic Dynamic v Dynamic
(part of the Dynamic loader loader _,' loader [|
operating loader
system)
Load-and-call Load-and-call
ERRHANDL ERRHANDL
User User User
U
] Pro;?;m Drg;?arm program program i || program
"“l‘ L ERRHANDL «
) ERRHANDL | ERRHANDL ERRHAND y
T s b V(e @ ; T (e
Symbolic naffle B ' Retained in :
of the routine to ! . Pass control from the ' memory for the |
.be called P . OS to the called routine. ! L next call. =

- o Copyright © Al Rights Reserved by Yuar<Hao Chang

December 16, 2010

@

Bootstrap Loaders

» Given an idle computer with no program in memory, we need an
absolute loader to bring up the first program.

— With the machine empty and idle, we can simply specify the absolute
address for whatever program (e.g., OS) that is first loaded because no
program relocation is needed.

« On some systems, an absolute loader program is permanently resident
In a read-only memory (ROM).
— On some computers, the program is executed directly on the ROM.

- Cr)]n others, the program is copied from ROM to main memory and executed
there.

« On some systems, a built-in hardware function (or a very short ROM
program) reads a fixed-length record from some device into memory at
a fixed location.

— After the read operation is complete, control is transferred to the loaded
record. This record contains machine instructions that load the absolute
program.

— If the loading process requires the reading of others, and these in turn can
cause the reading of still more record, then this is called bootstrap. And the
first record is called bootstrap loader.

Copyright © All Rights Reserved by Yuan-Hao Chang

58

Implementation Examples

@

Examples

e MS-DOS Linker
* SUNOS Linker
e Cray MPP Linker

December 16, 2010

Copyright © All Rights Reserved by Yuan-Hao Chang

60

December 16, 2010

MS-DOS Linker

* Most of MS-DOS compilers and assemblers
(including MASM) produce object modules (.oDbj
files), not executable programs.

— Each object module contains a binary image of the

translated instructions, data of the program, and
structure of the program.

* MS-DOS LINK is a linkage editor that combines
one or more object modules to produce a complete
executable program (.exe files).

— LINK can also combine the translated programs with
other modules from object code libraries.

Copyright © All Rights Reserved by Yuan-Hao Chang

61

December 16, 2010 62

MS-DOS Object Module

* Record types in MS-DOS object module:

Record Types Description

THEADR Translator header

TYPDEF

PUBDEF External symbols and references
EXTDEF

LNAMES

SEGDEF Segment definition and grouping
GRPDEF

Efgﬁj } Translated instructions and data
FIXUPP Relocation and linking information
MODEND End of object module

Copyright © All Rights Reserved by Yuan-Hao Chang

December 16, 2010

MS-DOS Object Module (Cont.)

 Module start and end

— THEADR record (similar to Header record in SIC/XE)
- Specify the name of the object module.

— MODEND record (similar to End record in SIC/XE)

- Mark the end of the modules and contain a reference to the entry point of
the program.

 External symbols and references

— PUBDEF record (similar to Define record in SIC/XE)

- Contain a list of external symbols (i.e., public names) that are defined in
this module.

— EXTDEF record (similar to Refer record in SIC/XE)
- Contain a list of external symbols that are referred to in this module.

— TYPDEF record
- Contain information about the data type designated by an external name.

Copyright © All Rights Reserved by Yuan-Hao Chang

63

December 16, 2010 64

MS-DOS Object Module (Cont.)

* Segment definition and grouping
— SEGDEF record

- Describe the segments in the module, including their name,
length, and alignment.

— GRPDEF record
- Specify how these segments are combined into groups.

— LNAMES record

- Contain a list of all the segment and class names used in the
programs.

- Note: SEGDEF and GRPDEF records refer to a segment by
giving the position of its name in the LNAMES records (similar to
the “reference number” in SIC/XE).

Copyright © All Rights Reserved by Yuan-Hao Chang

December 16, 2010 65

MS-DOS Object Module (Cont.)

* Translated instructions and data

— LEDATA record (similar to Text record in SIC/XE)
- Contain translated instruction and data from the source program.

— LIDATA record

- Specify translated instructions and data that occur in a repeating
pattern.

Relocation and linking information

— FIXUPP record (similar to Modification record of SIC/XE)

- Use to resolve external references, and carry out address
modifications that are associated with relocation and grouping of
segments within the program.

- Must immediately follow the LEDATA or LIDATA record to which it
applies.

Copyright © All Rights Reserved by Yuan-Hao Chang

December 16, 2010

MS-DOS LINK

* LINK performs its processing in two passes:

—Pass 1

- Compute a starting address for each segment in the program.

- Segments are placed into the executable program in the same order
of processing SEGDEF records.

- Segments from different object modules are combined if they have the
same segment name and class.

- Segments with the same class, but different names, are concatenated.
- Control a symbol table that associates an address with each
segment and each external symbol.

- If unresolved external symbols remain after all object modules have
been processed, LINK searches the specified libraries. (similar to
automatic library search in SIC/XE)

Copyright © All Rights Reserved by Yuan-Hao Chang

66

December 16, 2010

MS-DOS LINK (Cont.)

— Pass 2
- Extract the translated instructions and data from modules.

- Build an image of the executable program in memory because the
executable program is organized by segment, not the order of object
modules.

- Building a memory image is the most efficient way to handle rearrangements
caused by combining and concatenating segments.

- If the available memory is not enough, use a temporary disk file.

- Process each LEDATA and LIDATA record with FIXUPP records.

- Placing the binary data from records into the memory image at locations that reflect
the segment addresses computed in Pass 1.

- Repeated data specified in LIDATA records is expanded at this time.

- Resolve relocations and external references.

- Relocation operations that involve the starting address of a segment are added to
a table of segment fixups.

» This table is used to perform segment relocation when the program is loaded for
execution. Copyright © All Rights Reserved by Yuan-Hao Chang

67

December 16, 2010 68

MS-DOS LINK (Cont.)

* After the memory image is complete, it is written as
an executable (.exe) file. This file contains a
header that contains

— The table of segment fixups
— Information about memory requirements and entry points
— Initial contents for registers CS and SP.

Copyright © All Rights Reserved by Yuan-Hao Chang

December 16, 2010 69

SunOS Linkers

* SUNOS provides two different linkers:

— Link-editor:
- It is invoked in the process of compiling a program.

- It takes object modules (produced by assemblers or compilers)
and combines them to produce a single output module.

—Run-time link:
- It is invoked at execution time to bind dynamic executables and
shared objects.

- It determines what shared objects are required , and ensures that
these objects are included.

- It also inspects whether the share objects have the dependency
on other shard objects.

Copyright © All Rights Reserved by Yuan-Hao Chang

December 16, 2010

SunOS Linkers — Link Editor

* The output module of the link editor could be one
of the following types:

— Relocatable object module
- Suitable for further link-editing

— Static executable
- All symbolic references bound and ready to run

—Dynamic executable
- Some symbolic references may need to be bound at run time.

—Shared object

- This provides services that can be bound at run time to other
dynamic executables.

Copyright © All Rights Reserved by Yuan-Hao Chang

70

December 16, 2010

* An object module contains one or more sections,
which represent the instructions and data areas
from the source program.

— Each section has a set of attributes (e.g., “executable”
and “writable”).

— The object module also includes

- A list of the relocation and linking operations that need to be
performed, and

- A symbol table that describes the symbols used in these
operations.

Copyright © All Rights Reserved by Yuan-Hao Chang

71

December 16, 2010

SunQOS Linkers — Link Editor (Cont.)

* The link-editor begins by reading the input files of object modules .

— Sections from the input files that have the same attributes are concatenated
to form new sections within the output file.

— The symbol tables from the input files are processed to match symbol
definitions and references, and relocation and linking operations within the
output file.

e The linker normally generates a new symbol table, and a new set of
relocation instruction, within the output file.

— For symbols that must be bound at run time.
— For relocation operations that must be performed when loaded.

* Relocation and linking operations are specified using a set of processor-
specific codes.

— Processor-specific codes describe the size of the field that is to be
modified, and the calculation that must be performed.

- Relocation codes for different machines (e.g., SPARC and x86) are different.

Copyright © All Rights Reserved by Yuan-Hao Chang

72

December 16, 2010

! - ® - .‘.:.
y e = I
' . T &
=R g

SunQOS Linkers — Link Editor (Cont.)

» Symbolic references from the input files (that do not have
matching definitions) are processed by referring to archives
and shared objects.

— An archive is a collection of relocatable object modules.

- A directory stored with the archive associates symbol names with the
object modules that contain their definitions.

- Selected modules from an archive are automatically included to resolve
symbolic references.
— A shared object is an indivisible unit that was generated by a
previous link-edit operation.

- When the link-editor encounters a reference to a symbol defined in a
shared object, the entire contents of the shared object become a logical
part of the output file.

- All symbols defined in the object are made available to the link-editing
process.

- The shared object is not physically included in the output file.
- The actual inclusion is deferred until run time.
- The link-editor only records the dependency on the shared object.

Copyright © All Rights Reserved by Yuan-Hao Chang

73

December 16, 2010

SunOS Linkers — Run-Time Linker

* The run-time linker determines what shared objects are
required , and ensures that these objects are included.

 After the necessary shared objects are included, the linker
performs relocation and linking operations.

— The operations are specified in the relocation and linking sections
of the dynamic executable and shared objects.

- They bind symbols to the actual memory addresses.

- Binding of data references is performed before the control is passed to
the executable program.

- Binding of procedure calls is normally deferred until the program is in
execution. This is called lazy binding:

- When a procedure is called for the first time, the linker looks up the actual
address of the called procedure and insert it a procedure linkage table.

- The subsequent calls will go directly to the called procedure through this table.
Copyright © All Rights Reserved by Yuan-Hao Chang

74

December 16, 2010

SunOS Linkers — Run-Time Linker (Cont.)

* During execution, a program can dynamically bind
to new shared objects by requesting the same
services of the linker by inserting the actual
address to the procedure linkage table.

— This feature allows a program to choose between a
number of shared objects.

— This feature reduces the amount of overhead required
for starting a program and the amount of required
memory.

Copyright © All Rights Reserved by Yuan-Hao Chang

75

December 16, 2010

@

Cray MPP Linker

* Cray MPP architecture
— A T3E system contains a large number of processing elements (PES).
— Each PE has its own local memory. (Faster)
— A PE can access the memory of all other PEs. (called remote memory). (Slower)

* An application program on a T3E system is normally allocated a partition that
consists of several PEs.
* The work to be done by the program is divided between the PEs in the partition.

— One common way is to distribute the elements of an array among the PEs.
— This kind of data sharing and work between PEs can be specified in a program.

PEO PE1 PE15
A[1] A[17] A[241]
Al2] A[18] A[242]
A[3] A[19] o A[243]

A[16] A[32] A[256] Reserved by Yuan-Hao Chang

December 16, 2010 77

Cray MPP Linker (Cont.)

« Shared data and private data
— Data divided among a number of PEs is called shared data.
— Data that are not shared among PEs are called private data.

* In most cases, private data is replicated on each PE in the patrtition.

 When a program is loaded, each PE gets
— A copy of the executable code for the program,
— lIts private data, and PEO PE1 PEN

— Its portion of the share data.
Code Code Code
Private Private Private
data data data
Shared Shared Shared
data-0 data-1 data-n
Shared data-i indicates the |

portion assigned to PEi
Copyright © All Rights Reserved by Yuan-Hao Chang

December 16, 2010

Cray MPP Linker (Cont.)

« The MPP linker organizes blocks of code or data from the object
programs into lists.

— The blocks on a given list all share some common property, e.g., executable
code, private data, or shared data.

— The blocks on each list are collected together, assigned addresses, and
performed with relocation/linking operations.

 The linker then writes an executable file that contains the relocated and
linked blocks. This executable file also specifies the number of required
PEs.

 The distribution of shared data depends on the number of PEs in the
partition.
— If the number of PEs in the partition is specified at compile time, it cannot be
overridden later.
— If the partition size is not specified at compile time, there are two
possibilities:
- 1. The linker creates an executable file specifying a fixed number of PEs.

- 2. The linker allows the partition size to be chosen at run time (plastic executable).

- A plastic executable file must contain a copy of all relocatable object modules and all linker

directives needed to the final executable.
Copyright © All Rights Reserved by Yuan-Hao Chang

78

	投影片編號 1
	Outline
	投影片編號 3
	Linker and Loader
	Linker and Loader (Cont.)
	Design of An Absolute Loader
	Algorithm for an Absolute Loader
	Object Program Format
	Simple Bootstrap Loader
	Bootstrap Loader for SIC/XE�
	投影片編號 11
	Issues of Absolute Loaders
	Machine-Dependent Loader Features
	Relocation
	Example
	Example (Cont.)
	投影片編號 17
	Object Program with Relocation Bits
	Program Linking
	Program Linking Example (PROGA)
	Program Linking Example (PROGB)
	Program Linking Example (PROGC)
	Relocation and Linking on REF4 from PROGA
	Program Linking Example after Linking and Loading
	Instruction Operand Calculation
	External Reference Issue in Linking Loaders
	Data Structure for Linking Loader
	Pass 1 of Linking Loader
	Pass 1 of Linking Loader (Cont.)
	Algorithm �for Pass 1
	Pass 2 of Linking Loader
	Pass 2 of Linking Loader (Cont.)
	Algorithm �for Pass 2
	Advanced Method for External Symbols
	Advanced Method for External Symbols (PROGA)
	Advanced Method for External Symbols (PROGB)
	Advanced Method for External Symbols (PROGC)
	投影片編號 38
	Automatic Library Search
	Automatic Library Search (Cont.)
	Automatic Library Search (Cont.)
	Automatic Library Search (Cont.)
	Loader Options - Special Command Language
	Loader Options – Alternative Sources
	Loader Options - Example
	Loader Options – Non-Resolved External References
	Loader Options – Other Options
	投影片編號 48
	Loader Design Options
	Linkage Editors
	Linking Loader vs. Linkage Editors�
	Linkage Editors – Subroutine Replacement
	Linkage Editors – Building Packages
	Linkage Editors – Building Packages (Cont.)
	Dynamic Linking
	Dynamic Linking (Cont.)
	Dynamic Linking through Operating System
	Bootstrap Loaders
	投影片編號 59
	Examples
	MS-DOS Linker
	MS-DOS Object Module
	MS-DOS Object Module (Cont.)
	MS-DOS Object Module (Cont.)
	MS-DOS Object Module (Cont.)
	MS-DOS LINK
	MS-DOS LINK (Cont.)
	MS-DOS LINK (Cont.)
	SunOS Linkers
	SunOS Linkers – Link Editor
	SunOS Linkers – Link Editor (Cont.)
	SunOS Linkers – Link Editor (Cont.)
	SunOS Linkers – Link Editor (Cont.)
	SunOS Linkers – Run-Time Linker
	SunOS Linkers – Run-Time Linker (Cont.)
	Cray MPP Linker
	Cray MPP Linker (Cont.)
	Cray MPP Linker (Cont.)

