
Chapter 3
Loaders and Linkers

Chapter 3
Loaders and Linkers

December 16, 2010 2

Copyright © All Rights Reserved by Yuan-Hao Chang

Outline
• Basic Loader Functions

• Machine-Dependent Loader Features

• Machine-Independent Loader Features

• Loader Design Options

• Implementation Examples

Basic Loader FunctionsBasic Loader Functions

December 16, 2010 4

Copyright © All Rights Reserved by Yuan-Hao Chang

Linker and Loader
Object program

– Contain translated instructions and data values from the source
program.

– Specify addresses in memory where these items are to be loaded.

• Three important processes to load an object program:
– Loading: Bring the object program into memory for execution.
– Relocation: Modify the object program so that it can be loaded at an

address different from the location originally specified.
– Linking: Combine two or more separate object programs and supply

information needed to allow references between them.

December 16, 2010 5

Copyright © All Rights Reserved by Yuan-Hao Chang

Linker and Loader (Cont.)
• Loader

– A system program performs the loading function.
– Some also supports relocation and linking.

• Some systems have a linker (or linkage editor) to
perform the linking operations and a separate
loader to handle relocation and loading.

• All the program translators (i.e., assemblers and
compilers) produce the same object program
format. Thus one system loader or linker can be
used regardless the original source programming
language.

December 16, 2010 6

Copyright © All Rights Reserved by Yuan-Hao Chang

Design of An Absolute Loader

The Header record is first
checked.
Then, each Text record is read to
memory.
When the End record is
encountered, the loader jumps to
the specified address.

One byte
character

Half-byte

December 16, 2010 7

Copyright © All Rights Reserved by Yuan-Hao Chang

Algorithm for an Absolute Loader

December 16, 2010 8

Copyright © All Rights Reserved by Yuan-Hao Chang

Object Program Format
• In our object program, each byte of assembled code is given using its

hexadecimal representation in character form.
– E.g., The opcode for STL instruction would be represented by the pair of

characters “1” and “4”.
- When they are read by the loader, they occupy two bytes of memory and must be

stored in a singly byte with hexadecimal value 14.
- Each pair of bytes from the object program record must be packed together into

one byte during loading.

• This method of representing an object program is inefficient in terms of
space and execution time.

• Therefore, most machines store object program in a binary form: Each
byte of object code is stored as a single byte in the object program.

– The file and device conventions should not cause some of the object
program bytes to be interpreted as control character.

– E.g., Indicating the end of a record with a byte containing hexadecimal 00
would clearly be unsuitable for use with a binary object program.

• Obviously, object program stored in binary form do not lend themselves
well to printing or to reading by human beings. Therefore, we continue
to use character representations of object programs in this course.

December 16, 2010 9

Copyright © All Rights Reserved by Yuan-Hao Chang

Simple Bootstrap Loader
• Bootstrap loader is a special type of absolute loader that

is executed when a computer is first turned on or restarted.
• This bootstrap loads the first program to be run by the

computer – usually an operating systems.
• The bootstrap loader for SIE/XE:

– The bootstrap begins at address 0 in the memory of the machine.
– It loads the operating system starting at address 80.
– Because this loader is used in a unique situation (the initial program

load or the system), the program to be loaded can be represented in
a very simple format.
- Each byte of object code to be loaded is represented on device F1 as

two hexadecimal digits. (No Header record, End record, or control info.)
- The object code from device F1 is always loaded into consecutive bytes

of memory, starting at address 80.
- After loading, the bootstrap jumps to address 80 to execute loaded

program.

December 16, 2010 10

Copyright © All Rights Reserved by Yuan-Hao Chang

Bootstrap Loader for SIC/XE

S (A)

A (S)+(A)

X (X)+1;
(X):(X)

“A” through “F”:
(hex 41 to 46)

“0” through “9”
(hex 30 to 39)

End-of-file:
hex 04

Machine-Dependent
Loader Features

Machine-Dependent
Loader Features

December 16, 2010 12

Copyright © All Rights Reserved by Yuan-Hao Chang

Issues of Absolute Loaders
• On a larger and more advanced machine, we do
not know in advance where a program will be
loaded.

• Efficient sharing of the machine requires that we
write relocatable programs instead of absolute one.

• Write absolute programs makes it difficult to use
subroutine libraries efficiently.
– Most such libraries contain many more subroutines than

will be used by any one program.
– To make efficient use of memory, it is important to be

able to select and load exactly those routines that are
needed.

December 16, 2010 13

Copyright © All Rights Reserved by Yuan-Hao Chang

Machine-Dependent Loader Features
• Program relocation is an indirect consequence of
the change to larger and more powerful computers.
– The way relocation is implemented in a loader is also

dependent upon machine characteristics.

• Linking is not a machine-dependent function, but it
has the same implementation techniques for
loaders.
– The process of linking usually involves relocation of

some of the routines being linked together.

December 16, 2010 14

Copyright © All Rights Reserved by Yuan-Hao Chang

Relocation
• Loaders that allow for program relocation are
called relocating loaders or relative loaders.

• Two methods for specifying relocation in object
programs:
– Use Modification records.

- A Modification record is used to describe each part of the object
code that must be changed when the program is relocated.

- It is not well suited for use with all machine architectures.
E.g., SIC machine doesn’t not use relative addressing.
(Need too many Modification records.)

– Use direct addressing with relocation bits.
- It is suitable for machines that do not use relative addressing.

December 16, 2010 15

Copyright © All Rights Reserved by Yuan-Hao Chang

Line number Label Instruction Operand Object code Machine address
Relocatable program

Example

Use
Modification

records

December 16, 2010 16

Copyright © All Rights Reserved by Yuan-Hao Chang

Example (Cont.)

Modification records
for +JSUB

December 16, 2010 17

Copyright © All Rights Reserved by Yuan-Hao Chang

Example for
relocation
bits (SIC
Machine)

Line number Label Instruction Operand Object code Machine address
Starting address

PC (L)

Begin a new
Text record

December 16, 2010 18

Copyright © All Rights Reserved by Yuan-Hao Chang

Object Program with Relocation Bits
Example for
relocation
bits (SIC
Machine)

Bit mask:
Each relocation bit is
associated with each word of
object code.

Each relocation bit is
associated with a 3-

byte segment of object
code in the Text record.

1: program’s starting address
needs to be added to this word.
0: No need to be addedd.

No modification is
needed for RSUB.

Data content. No
modification is needed

If it were placed in the preceding
Text record, it would not be

properly aligned to correspond to
a relocation bit because of the 1-
byte data value from Line 185.

December 16, 2010 19

Copyright © All Rights Reserved by Yuan-Hao Chang

Program Linking
• Control sections could be assembled together, or
they can be assembled independently of one
another.
– The programmer has a natural inclination to think of a

program as a logical entity that combines all of the
related control sections.

– The loader has no such thing in this sense:
- There are only control sections that are to be linked, relocated,

and added.
- The loader has no way of knowing which control sections were

assembled at the same time.

December 16, 2010 20

Copyright © All Rights Reserved by Yuan-Hao Chang

Program Linking Example (PROGA)

December 16, 2010 21

Copyright © All Rights Reserved by Yuan-Hao Chang

Program Linking Example (PROGB)

ENDA=4054, LISTA = 4040, LISTC=4112

LISTC = PROGC + 0030
= 40E2 + 0030 = 4112

December 16, 2010 22

Copyright © All Rights Reserved by Yuan-Hao Chang

Program Linking Example (PROGC)

December 16, 2010 23

Copyright © All Rights Reserved by Yuan-Hao Chang

Relocation and Linking on REF4 from
PROGA

LISTC = PROGC + 0030
= 40E2 + 0030 = 41120014

ENDA: 4054
LISTA: 4040

Program is loaded
starting at address
4000.

ESTAB

December 16, 2010 24

Copyright © All Rights Reserved by Yuan-Hao Chang

Program Linking Example after Linking
and Loading

REF4

REF1
(PC relative)

REF1
(extended format)

ESTAB

December 16, 2010 25

Copyright © All Rights Reserved by Yuan-Hao Chang

Instruction Operand Calculation
• For the references that are instruction operands, the

calculated values after loading do not always appear to be
equal.

– This is because there is an additional address calculation step
involved for program-counter relative (or base relative) instruction.

– In these cases, it is the target addresses that are the same.
– For example:

- In PROGA, the reference REF1 is a PC relative instruction with
displacement 01D. When this instruction is executed, the program
counter contains the value 4023. (TA = 4023 + 01D = 4040)

- No relocation is needed for this this instruction because the PC will
always contains the actual address of the next instruction.

· This is considered as relocation at execution time automatically through target
address calculation.

- In PROGB, reference REF1 is an extended format instruction that
contains a direct address. This address (after linking) is 4040.

December 16, 2010 26

Copyright © All Rights Reserved by Yuan-Hao Chang

External Reference Issue in Linking Loaders
• The input to a loader consists of a set of object programs

(i.e., control sections) that are to be linked together.
– In a control section, external reference to a symbol whose definition

does not appear until later in this input stream (.i.e., other control
sections).

– In such a case, the required linking operation cannot be performed
until an address is assigned to the external symbol (i.e., until the
later control section is read).

• In order to resolve the address of external references, a
linking loader usually makes two passes over its input.

– Pass 1: Assign address to all external symbols.
– Pass 2: Perform the actual loading, relocation, and linking.

December 16, 2010 27

Copyright © All Rights Reserved by Yuan-Hao Chang

Data Structure for Linking Loader
• External symbol table (ESTAB) is the main data
structure needed for the linking loader.
– It is to store the name and address of each external

symbol.
– It is similar to SYMTAB in the assembler.
– It indicates in which control section the symbol is defined.
– A hash organization is typically used for this table.
– Two variables are defined:

- PROGADDR (program load address):
· Indicate the beginning address in memory where the linked program is
to be loaded. Its value is supplied to loader by the operating system.

- CSADDR (control section address):
· Contain the starting address assigned to the control section currently
being scanned by the loader.

December 16, 2010 28

Copyright © All Rights Reserved by Yuan-Hao Chang

Pass 1 of Linking Loader
• In Pass 1, the loader is concerned only with Header and

Define record types in the control sections.
– Initialization:

- The beginning load address for the linked program (PROGADDR) is
obtained from the operating system.

- This becomes the starting address (CSADDR) for the first control
section in the input sequence.

– Record scanning:
- The control section name from the Header record is entered into

ESTAB, with value given by CSADDR.
- All external symbols appearing in the Define record for the control

section are also entered into ESTAB.
- External symbols’ addresses are obtained by adding the value specified

in the Define record to CSADDR. (specified address + CSADDR)
- When End record is read, the control section length CSLTH (obtained

from Header record) is added to CSADDR to calculate the starting
address for the next control section. (CSADDR = CSAADR + CSLTH)

December 16, 2010 29

Copyright © All Rights Reserved by Yuan-Hao Chang

Pass 1 of Linking Loader (Cont.)
• At the end of Pass 1, ESTAB contains all external symbols defined in the set of

control sections together with the address assigned to each.

• Many loaders include as an option the ability to print a load map that shows
these symbols and their addresses.

– This information is useful in program debugging.

• The following table is the ESTAB of the previous example at the end of Pass 1.
Control
Section Symbol name Address Length

PROGA
LISTA
ENDA

4000
4040
4054

0063

PROGB
LISTB
ENDB

4063
40C3
40D3

007F

PROGC
LISTC
ENDC

40E2
4112
4124

0051

December 16, 2010 30

Copyright © All Rights Reserved by Yuan-Hao Chang

Algorithm
for Pass 1

// Define record

// Header record

// reach End record

// Each iteration processes one control
section

December 16, 2010 31

Copyright © All Rights Reserved by Yuan-Hao Chang

Pass 2 of Linking Loader
• In Pass 2, loader performs the actual loading,
relocation, and linking of the program.
– CSADDR is used in the same way as it was in Pass 1.

- It always contains the actual starting address of the control
section currently being loaded.

– As each Text record is read, the object code is moved
to the specified address plus the current value of
CSADDR. (specified address + CSADDR)

– When a Modification record is encountered, the symbol
whose value is to be used for modification is looked up in
ESTAB.
- This value is then added to or subtracted from the indicated

location in memory.

December 16, 2010 32

Copyright © All Rights Reserved by Yuan-Hao Chang

Pass 2 of Linking Loader (Cont.)
• The last step of Pass 2 is to transfer control to the
loaded program to begin execution.
– The End record for each control section may contain the

address of the first instruction in that control section to be
executed.

– Two scenarios could be encountered:
- 1. If more than one control section specifies a transfer address,

the loader arbitrarily uses the last one encountered.
- 2. If no control section contains a transfer address, the loader

uses the beginning of the linked program (i.e., PROGADDR) as
the transfer point.

– Normally, a transfer address would be placed in the End
record for a main program, but not for a subroutine.

December 16, 2010 33

Copyright © All Rights Reserved by Yuan-Hao Chang

Algorithm
for Pass 2

// Text record

// Each iteration processes one control section

// Modification record

// End record: transfer
address is specified// Move to next CS

December 16, 2010 34

Copyright © All Rights Reserved by Yuan-Hao Chang

Advanced Method for External Symbols
• We can assign a reference number to each external

symbol referred to in a control section.
• This reference number is used in Modification records.
• E.g.,

– Control section name with reference number 01.
– The other external reference symbols are assigned numbers as

part of the Refer record for the control section.

• The main advantage of this reference-number mechanism
is that it avoids multiple searches of ESTAB for the
same symbol during the loading of a control section.

– An external reference symbol can be looked up in ESTAB once for
each control section that uses it.

– The value for code modification can then be obtained by simply
indexing into an array of these values.

December 16, 2010 35

Copyright © All Rights Reserved by Yuan-Hao Chang

Advanced Method for External Symbols
(PROGA)

December 16, 2010 36

Copyright © All Rights Reserved by Yuan-Hao Chang

Advanced Method for External Symbols
(PROGB)

December 16, 2010 37

Copyright © All Rights Reserved by Yuan-Hao Chang

Advanced Method for External Symbols
(PROGC)

Machine-Independent
Loader Features

Machine-Independent
Loader Features

December 16, 2010 39

Copyright © All Rights Reserved by Yuan-Hao Chang

Automatic Library Search
• Many linking loaders can automatically incorporate routines

from a subprogram library into the program being loaded.
– In most cases, there is a standard system library that is used in

this way.
– Other libraries may be specified by control statements or by

parameters to the loader.

• Automatic library search allows programmer to use
subroutines from one or more libraries.

• The programmer does not need to take any action beyond
mentioning the subroutine names as external references in
the source program.

December 16, 2010 40

Copyright © All Rights Reserved by Yuan-Hao Chang

Automatic Library Search (Cont.)
• Linking loaders must keep track of external symbols that

are referred to (but not defined) in the primary input to the
loader.

– 1. Symbols from each Refer record are entered ESTAB.
– 2. When the definition for a symbol is encountered, the address

assigned to the symbol is filled I to complete the symbol entry.
– 3. At the end of Pass 1, the symbols in ESTAB that remain

undefined represent unresolved external references.
– 4. The loader searches the libraries specified for routines that

contain the definitions of these symbols.
– 5. The loader then processes the subroutines found by this search

exactly as if they had been part of the primary input stream.

• The subroutines fetched from a library may themselves
contain external references. It is necessary to repeat the
library search process until all references are resolved.

December 16, 2010 41

Copyright © All Rights Reserved by Yuan-Hao Chang

Automatic Library Search (Cont.)
• Automatic library search allows programmers to
override the standard subroutines in the library by
supplying his or her own routines.

• For example:
– Suppose that the main program refers to a standard

subroutine name SQRT.
– A programmer who wanted to use a different version of

SQRT could simply include the new SQRT as input to
the loader.

– By the end of Pass 1 of the loader, SQRT would already
be defined, so the original SQRT would not be included
in any library search.

December 16, 2010 42

Copyright © All Rights Reserved by Yuan-Hao Chang

Automatic Library Search (Cont.)
• The libraries to be searched by the loader ordinarily contain

assembled or compiled versions of the subroutines (i.e.,
object code).

– It is possible to search these libraries by scanning the Define
records for all of the object programs in the library, but it is lack of
efficiency.

– In most cases, a special file structure is used for the libraries:
- This structure contains a directory that gives

· The name of each routine and
· A pointer to its address within the file.

– If a subroutine is callable by more than one name (using different
entry points), both names are entered into the directory.

– The library search itself involves
- 1) a search of the directory, followed by
- 2) reading the object programs indicated by this search.

– If the directory could be stored in memory, the search process could
be accelerated.

December 16, 2010 43

Copyright © All Rights Reserved by Yuan-Hao Chang

Loader Options - Special Command
Language
• Many loaders have a special command language that is

used to specify options.
– Sometimes there is a separate input file to the loader that contains

such control statements.
– Sometimes these same statements can also be embedded in the

primary input stream between object programs.
– On a few systems, the programmer can even include loader control

statements in the source program, and assembler or compiler
retains these commands as a part of the object program.

• Note: Some systems use job control language that is
processed by the operating system.

– When this approach is used, the OS incorporates the options
specified in a control block that is made available to the loader
when it is invoked.

December 16, 2010 44

Copyright © All Rights Reserved by Yuan-Hao Chang

Loader Options – Alternative Sources
• One typical loader option allows the selection of
alternative sources of input.

• For example:
INCLUDE program-name (library-name)

Direct the loader to read the
designated object program from
a library and treat it as if it were
part of the primary loader input.

DELETE csect-name Allow users to delete the named control
sections.

CHANGE name 1, name2 Change the external symbol from name1
to name2. whenever it appears in the
object program.

LIBRARY MYLIB

Allow the user to specify alternative libraries to be
searched. Such user-specified libraries are normally
searched before the standard system libraries.

December 16, 2010 45

Copyright © All Rights Reserved by Yuan-Hao Chang

Loader Options - Example
• Suppose that a set of utility subroutines is made
available on the computer system.
– Two of these (READ and WRITE) are designed to

perform the same functions as RDREC and WRREC.
– The following sequence of loader commands could be

used to make this change without reassembling the
program:

INCLUDE READ(UTLIB)
INCLUDE WRITE(UTLIB)
DELETE RDRED, WRREC
CHANGE RDREC, READ
CHANGE WRREC, WRITE

Change external references
to RDREC to refer to symbol
READ.

December 16, 2010 46

Copyright © All Rights Reserved by Yuan-Hao Chang

Loader Options – Non-Resolved External
References
• Loaders might allow uses to specify that some references not be

resolved.

• For example:
– A certain program can perform an analysis of the data using the routines

STDDEV, PLOT, CORREL from a statistical library.
– Since the program contains external references to these three routines, they

are ordinarily loaded and linked with the program.
– If it is known that the statistical analysis is not to be performed in a particular

execution of this program, the user could include a command such as:

to instruct the loader that these external references are to remain
unresolved.

• This avoids the overhead of loading and linking the unneeded routines,
and saves the memory space that would otherwise be required.

NOCALL STDDEV, PLOT, CORREL

December 16, 2010 47

Copyright © All Rights Reserved by Yuan-Hao Chang

Loader Options – Other Options
• It is also possible to specify that no external references to

be resolved by library search.
– This option is useful when programs are to be linked but not

executed immediately.
– It is desirable to postpone the resolution of external references in

some cases. (e.g., dynamic linking)

• Other options:
– The ability to output load map that shows the detailed information

(e.g., control section names, addresses, external symbol addresses,
cross-reference table) during loading.

– The ability to specify the location at which execution is to begin
overriding any information given in the object programs.

– The ability to control whether or not the loader should attempt to
execute the program if errors detected during the load (e.g.,
unresolved external references)

Loader Design OptionsLoader Design Options

December 16, 2010 49

Copyright © All Rights Reserved by Yuan-Hao Chang

Loader Design Options
• Linkage editors

– Perform linking prior to load time.

• Dynamic linking
– Link functions at execution time.

• Bootstrap loaders
– Loaders that can be used to run stand-alone programs

independent of the operating system or the system
loader.

December 16, 2010 50

Copyright © All Rights Reserved by Yuan-Hao Chang

Linkage Editors
• The linkage editor produces a linked version of the program (called a

load module or an executable image) that is written to a file or library for
later execution.

• When the user is ready to run the linked program, a simple relocating
loader can be used to load the program into memory.

– The only object code modification is the addition of an actual load address
to relative values within the program.

• The linkage editor performs relocation of all control sections relative to
the start of the linked program.

– Thus, all items that need to be modified at load time have values that are
relative to the start of the linked program.

– This means that the loading can be accomplished in one pass with no
external symbol table required.

• All external references are resolved, and relocation is indicated by
Modification records or a bit mask.

• Information concerning external references is often retained in the
linked program to allow subsequent relinking of the program to
replace control sections, modify external references.

December 16, 2010 51

Copyright © All Rights Reserved by Yuan-Hao Chang

Linking Loader vs. Linkage Editors

Linking Loader Linkage Editors

• Linkage editor is preferred when
– A program is to be executed many

times without being reassembled.

• Linkage editor resolves external
references and searches library
once.

• Linking loader is preferred when
– A program is reassembled for near

every execution. (during
development and testing phase)

– A program is used so infrequently.

• Linking loader searches libraries and
resolves external references every
time the program is executed.

December 16, 2010 52

Copyright © All Rights Reserved by Yuan-Hao Chang

Linkage Editors – Subroutine Replacement
• If the actual address at which the program will be loaded is known in

advance, the linkage editor can perform all of the needed relocation.

• Linkage editors can replace existing subroutines without going back to
the original versions of all other subroutines.

– Consider a program (PLANNER) that uses a large number of subroutines.
– One subroutine (PROJECT) used by the program is changed to correct an

error or to improve efficiency.

INCLUDE PLANNER(PROGLIB)
DELETE PROJECT {DELETE from existing PLANNER}
INCLUDE PROJECT(NEWLIB) {INCLUDE new version)
REPLACE PLANNER(PROGLIB)

December 16, 2010 53

Copyright © All Rights Reserved by Yuan-Hao Chang

Linkage Editors – Building Packages
• Linkage editors can be used to build packages of

subroutines or other control sections that are used
together.

• For example:
– In FORTRAN, there are a large number of subroutines that

are used to handle formatted input and output:
- Read and write data blocks (READR, WRITER)
- Block and deblock records (BLOCK, DEBLOCK)
- Encode and decode data items (ENCODE, DECODE)

– There are a large number of cross-references between these
subprograms because of their closely related functions.

– If a program using formatted I/O were linked in the usual way,
all of the cross-references between these library subroutines
would need to processed individually. (every time a
FORTRAN program is linked)

– The linkage editor could combine the appropriate
subroutines into a package to reduce linking overheads.

INCLUDE READR(FTNLIB)
INCLUDE WRITER(FTNLIB)
INCLUDE BLOCK(FTNLIB)
INCLUDE DEBLOCK (FTNLIB)
INCLUDE ENCODE(FTNLIB)
INCLUDE DECODE(FTNLIB)
.
.
.
SAVE FTNIO(SUBLIB)

Link subroutines into
the FTNIO.

A search of SUBLIB before
FTNLIB would retrieve FTNIO
instead of the separate routines.
FINTO already has all cross-
references between subroutines
resolved.

December 16, 2010 54

Copyright © All Rights Reserved by Yuan-Hao Chang

Linkage Editors – Building Packages (Cont.)
• Linkage editors often allow the user to specify that external

references are not to be resolved by automatic library
search so as to reduce library space.

– E.g., If 100 FORTAN programs using the above I/O routines have
their external references resolved, this would mean that a total of
100 copies of FTNIO would be stored.
- Thus external references between user-written routines would be

resolved.
- A linking loader could then be used to combine the linked user routines

with FTNIO at execution time.
– Because this process involves two separate linking operations, it

would have more overheads, but save a lot of library space.

• In general, linkage editors ten to offer more flexibility and
control, with a corresponding increase in complexity and
overhead.

December 16, 2010 55

Copyright © All Rights Reserved by Yuan-Hao Chang

Dynamic Linking
• Linking types:

– Linkage editors
- Perform linking operations before the program is loaded for execution.

– Linking loaders
- Perform the linking operations at load time.

– Dynamic linking (dynamic loading or load on call)
- Postpone the linking operations until execution time.

• Dynamic linking is often used to allow several executing
programs to share one copy of a subroutine or library.

– E.g., run-time support routines for a high-level language like C could
be stored in a dynamic link library.
- A single copy of the routines could be loaded into memory.
- All programs currently in execution could be linked to this one copy.

• In an object-oriented system, dynamic linking is often
used for references to software objects.

December 16, 2010 56

Copyright © All Rights Reserved by Yuan-Hao Chang

Dynamic Linking (Cont.)
• Dynamic linking provides the ability to load the
routines only when they are needed.
– If the subroutines involved are large, or have many

external references, this can result in substantial savings
of time and memory space.

• Dynamic linking avoid the necessity of loading the
entire library for each execution. E.g.,:
– Suppose that a program uses only a few out of a large

number of possible subroutines, but the exact routines
needed can not be predicted until the program examines
its input.

December 16, 2010 57

Copyright © All Rights Reserved by Yuan-Hao Chang

Dynamic Linking through Operating System

Symbolic name
of the routine to
be called

OS checks its
internal tables.

If necessary, the
routine is loaded from
the specified library.

Pass control from the
OS to the called routine.

Return to OS,
and then back to
the program.

Retained in
memory for the
next call.

December 16, 2010 58

Copyright © All Rights Reserved by Yuan-Hao Chang

Bootstrap Loaders
• Given an idle computer with no program in memory, we need an

absolute loader to bring up the first program.
– With the machine empty and idle, we can simply specify the absolute

address for whatever program (e.g., OS) that is first loaded because no
program relocation is needed.

• On some systems, an absolute loader program is permanently resident
in a read-only memory (ROM).

– On some computers, the program is executed directly on the ROM.
– On others, the program is copied from ROM to main memory and executed

there.
• On some systems, a built-in hardware function (or a very short ROM

program) reads a fixed-length record from some device into memory at
a fixed location.

– After the read operation is complete, control is transferred to the loaded
record. This record contains machine instructions that load the absolute
program.

– If the loading process requires the reading of others, and these in turn can
cause the reading of still more record, then this is called bootstrap. And the
first record is called bootstrap loader.

Implementation ExamplesImplementation Examples

December 16, 2010 60

Copyright © All Rights Reserved by Yuan-Hao Chang

Examples
• MS-DOS Linker

• SunOS Linker

• Cray MPP Linker

December 16, 2010 61

Copyright © All Rights Reserved by Yuan-Hao Chang

MS-DOS Linker
• Most of MS-DOS compilers and assemblers
(including MASM) produce object modules (.obj
files), not executable programs.
– Each object module contains a binary image of the

translated instructions, data of the program, and
structure of the program.

• MS-DOS LINK is a linkage editor that combines
one or more object modules to produce a complete
executable program (.exe files).
– LINK can also combine the translated programs with

other modules from object code libraries.

December 16, 2010 62

Copyright © All Rights Reserved by Yuan-Hao Chang

MS-DOS Object Module
• Record types in MS-DOS object module:

December 16, 2010 63

Copyright © All Rights Reserved by Yuan-Hao Chang

MS-DOS Object Module (Cont.)
• Module start and end

– THEADR record (similar to Header record in SIC/XE)
- Specify the name of the object module.

– MODEND record (similar to End record in SIC/XE)
- Mark the end of the modules and contain a reference to the entry point of

the program.

• External symbols and references
– PUBDEF record (similar to Define record in SIC/XE)

- Contain a list of external symbols (i.e., public names) that are defined in
this module.

– EXTDEF record (similar to Refer record in SIC/XE)
- Contain a list of external symbols that are referred to in this module.

– TYPDEF record
- Contain information about the data type designated by an external name.

December 16, 2010 64

Copyright © All Rights Reserved by Yuan-Hao Chang

MS-DOS Object Module (Cont.)
• Segment definition and grouping

– SEGDEF record
- Describe the segments in the module, including their name,

length, and alignment.

– GRPDEF record
- Specify how these segments are combined into groups.

– LNAMES record
- Contain a list of all the segment and class names used in the

programs.
- Note: SEGDEF and GRPDEF records refer to a segment by

giving the position of its name in the LNAMES records (similar to
the “reference number” in SIC/XE).

December 16, 2010 65

Copyright © All Rights Reserved by Yuan-Hao Chang

MS-DOS Object Module (Cont.)
• Translated instructions and data

– LEDATA record (similar to Text record in SIC/XE)
- Contain translated instruction and data from the source program.

– LIDATA record
- Specify translated instructions and data that occur in a repeating

pattern.

• Relocation and linking information
– FIXUPP record (similar to Modification record of SIC/XE)

- Use to resolve external references, and carry out address
modifications that are associated with relocation and grouping of
segments within the program.

- Must immediately follow the LEDATA or LIDATA record to which it
applies.

December 16, 2010 66

Copyright © All Rights Reserved by Yuan-Hao Chang

MS-DOS LINK
• LINK performs its processing in two passes:

– Pass 1
- Compute a starting address for each segment in the program.

· Segments are placed into the executable program in the same order
of processing SEGDEF records.

· Segments from different object modules are combined if they have the
same segment name and class.

· Segments with the same class, but different names, are concatenated.
- Control a symbol table that associates an address with each

segment and each external symbol.
· If unresolved external symbols remain after all object modules have
been processed, LINK searches the specified libraries. (similar to
automatic library search in SIC/XE)

December 16, 2010 67

Copyright © All Rights Reserved by Yuan-Hao Chang

MS-DOS LINK (Cont.)
– Pass 2

- Extract the translated instructions and data from modules.
- Build an image of the executable program in memory because the

executable program is organized by segment, not the order of object
modules.

· Building a memory image is the most efficient way to handle rearrangements
caused by combining and concatenating segments.

· If the available memory is not enough, use a temporary disk file.
- Process each LEDATA and LIDATA record with FIXUPP records.

· Placing the binary data from records into the memory image at locations that reflect
the segment addresses computed in Pass 1.

· Repeated data specified in LIDATA records is expanded at this time.
- Resolve relocations and external references.

· Relocation operations that involve the starting address of a segment are added to
a table of segment fixups.

» This table is used to perform segment relocation when the program is loaded for
execution.

December 16, 2010 68

Copyright © All Rights Reserved by Yuan-Hao Chang

MS-DOS LINK (Cont.)
• After the memory image is complete, it is written as
an executable (.exe) file. This file contains a
header that contains
– The table of segment fixups
– Information about memory requirements and entry points
– Initial contents for registers CS and SP.

December 16, 2010 69

Copyright © All Rights Reserved by Yuan-Hao Chang

SunOS Linkers
• SunOS provides two different linkers:

– Link-editor:
- It is invoked in the process of compiling a program.
- It takes object modules (produced by assemblers or compilers)

and combines them to produce a single output module.

– Run-time link:
- It is invoked at execution time to bind dynamic executables and

shared objects.
- It determines what shared objects are required , and ensures that

these objects are included.
- It also inspects whether the share objects have the dependency

on other shard objects.

December 16, 2010 70

Copyright © All Rights Reserved by Yuan-Hao Chang

SunOS Linkers – Link Editor
• The output module of the link editor could be one
of the following types:
– Relocatable object module

- Suitable for further link-editing

– Static executable
- All symbolic references bound and ready to run

– Dynamic executable
- Some symbolic references may need to be bound at run time.

– Shared object
- This provides services that can be bound at run time to other

dynamic executables.

December 16, 2010 71

Copyright © All Rights Reserved by Yuan-Hao Chang

SunOS Linkers – Link Editor (Cont.)
• An object module contains one or more sections,
which represent the instructions and data areas
from the source program.
– Each section has a set of attributes (e.g., “executable”

and “writable”).
– The object module also includes

- A list of the relocation and linking operations that need to be
performed, and

- A symbol table that describes the symbols used in these
operations.

December 16, 2010 72

Copyright © All Rights Reserved by Yuan-Hao Chang

SunOS Linkers – Link Editor (Cont.)
• The link-editor begins by reading the input files of object modules .

– Sections from the input files that have the same attributes are concatenated
to form new sections within the output file.

– The symbol tables from the input files are processed to match symbol
definitions and references, and relocation and linking operations within the
output file.

• The linker normally generates a new symbol table, and a new set of
relocation instruction, within the output file.

– For symbols that must be bound at run time.
– For relocation operations that must be performed when loaded.

• Relocation and linking operations are specified using a set of processor-
specific codes.

– Processor-specific codes describe the size of the field that is to be
modified, and the calculation that must be performed.

- Relocation codes for different machines (e.g., SPARC and x86) are different.

December 16, 2010 73

Copyright © All Rights Reserved by Yuan-Hao Chang

SunOS Linkers – Link Editor (Cont.)
• Symbolic references from the input files (that do not have

matching definitions) are processed by referring to archives
and shared objects.

– An archive is a collection of relocatable object modules.
- A directory stored with the archive associates symbol names with the

object modules that contain their definitions.
- Selected modules from an archive are automatically included to resolve

symbolic references.
– A shared object is an indivisible unit that was generated by a

previous link-edit operation.
- When the link-editor encounters a reference to a symbol defined in a

shared object, the entire contents of the shared object become a logical
part of the output file.

- All symbols defined in the object are made available to the link-editing
process.

- The shared object is not physically included in the output file.
· The actual inclusion is deferred until run time.
· The link-editor only records the dependency on the shared object.

December 16, 2010 74

Copyright © All Rights Reserved by Yuan-Hao Chang

SunOS Linkers – Run-Time Linker
• The run-time linker determines what shared objects are

required , and ensures that these objects are included.

• After the necessary shared objects are included, the linker
performs relocation and linking operations.

– The operations are specified in the relocation and linking sections
of the dynamic executable and shared objects.
- They bind symbols to the actual memory addresses.
- Binding of data references is performed before the control is passed to

the executable program.
- Binding of procedure calls is normally deferred until the program is in

execution. This is called lazy binding:
· When a procedure is called for the first time, the linker looks up the actual

address of the called procedure and insert it a procedure linkage table.
· The subsequent calls will go directly to the called procedure through this table.

December 16, 2010 75

Copyright © All Rights Reserved by Yuan-Hao Chang

SunOS Linkers – Run-Time Linker (Cont.)

• During execution, a program can dynamically bind
to new shared objects by requesting the same
services of the linker by inserting the actual
address to the procedure linkage table.
– This feature allows a program to choose between a

number of shared objects.
– This feature reduces the amount of overhead required

for starting a program and the amount of required
memory.

December 16, 2010 76

Copyright © All Rights Reserved by Yuan-Hao Chang

Cray MPP Linker
• Cray MPP architecture

– A T3E system contains a large number of processing elements (PEs).
– Each PE has its own local memory. (Faster)
– A PE can access the memory of all other PEs. (called remote memory). (Slower)

• An application program on a T3E system is normally allocated a partition that
consists of several PEs.

• The work to be done by the program is divided between the PEs in the partition.
– One common way is to distribute the elements of an array among the PEs.
– This kind of data sharing and work between PEs can be specified in a program.

December 16, 2010 77

Copyright © All Rights Reserved by Yuan-Hao Chang

Cray MPP Linker (Cont.)
• Shared data and private data

– Data divided among a number of PEs is called shared data.
– Data that are not shared among PEs are called private data.

• In most cases, private data is replicated on each PE in the partition.
• When a program is loaded, each PE gets

– A copy of the executable code for the program,
– Its private data, and
– Its portion of the share data.

Shared data-i indicates the
portion assigned to PEi

December 16, 2010 78

Copyright © All Rights Reserved by Yuan-Hao Chang

Cray MPP Linker (Cont.)
• The MPP linker organizes blocks of code or data from the object

programs into lists.
– The blocks on a given list all share some common property, e.g., executable

code, private data, or shared data.
– The blocks on each list are collected together, assigned addresses, and

performed with relocation/linking operations.
• The linker then writes an executable file that contains the relocated and

linked blocks. This executable file also specifies the number of required
PEs.

• The distribution of shared data depends on the number of PEs in the
partition.

– If the number of PEs in the partition is specified at compile time, it cannot be
overridden later.

– If the partition size is not specified at compile time, there are two
possibilities:

- 1. The linker creates an executable file specifying a fixed number of PEs.
- 2. The linker allows the partition size to be chosen at run time (plastic executable).

· A plastic executable file must contain a copy of all relocatable object modules and all linker
directives needed to the final executable.

	投影片編號 1
	Outline
	投影片編號 3
	Linker and Loader
	Linker and Loader (Cont.)
	Design of An Absolute Loader
	Algorithm for an Absolute Loader
	Object Program Format
	Simple Bootstrap Loader
	Bootstrap Loader for SIC/XE�
	投影片編號 11
	Issues of Absolute Loaders
	Machine-Dependent Loader Features
	Relocation
	Example
	Example (Cont.)
	投影片編號 17
	Object Program with Relocation Bits
	Program Linking
	Program Linking Example (PROGA)
	Program Linking Example (PROGB)
	Program Linking Example (PROGC)
	Relocation and Linking on REF4 from PROGA
	Program Linking Example after Linking and Loading
	Instruction Operand Calculation
	External Reference Issue in Linking Loaders
	Data Structure for Linking Loader
	Pass 1 of Linking Loader
	Pass 1 of Linking Loader (Cont.)
	Algorithm �for Pass 1
	Pass 2 of Linking Loader
	Pass 2 of Linking Loader (Cont.)
	Algorithm �for Pass 2
	Advanced Method for External Symbols
	Advanced Method for External Symbols (PROGA)
	Advanced Method for External Symbols (PROGB)
	Advanced Method for External Symbols (PROGC)
	投影片編號 38
	Automatic Library Search
	Automatic Library Search (Cont.)
	Automatic Library Search (Cont.)
	Automatic Library Search (Cont.)
	Loader Options - Special Command Language
	Loader Options – Alternative Sources
	Loader Options - Example
	Loader Options – Non-Resolved External References
	Loader Options – Other Options
	投影片編號 48
	Loader Design Options
	Linkage Editors
	Linking Loader vs. Linkage Editors�
	Linkage Editors – Subroutine Replacement
	Linkage Editors – Building Packages
	Linkage Editors – Building Packages (Cont.)
	Dynamic Linking
	Dynamic Linking (Cont.)
	Dynamic Linking through Operating System
	Bootstrap Loaders
	投影片編號 59
	Examples
	MS-DOS Linker
	MS-DOS Object Module
	MS-DOS Object Module (Cont.)
	MS-DOS Object Module (Cont.)
	MS-DOS Object Module (Cont.)
	MS-DOS LINK
	MS-DOS LINK (Cont.)
	MS-DOS LINK (Cont.)
	SunOS Linkers
	SunOS Linkers – Link Editor
	SunOS Linkers – Link Editor (Cont.)
	SunOS Linkers – Link Editor (Cont.)
	SunOS Linkers – Link Editor (Cont.)
	SunOS Linkers – Run-Time Linker
	SunOS Linkers – Run-Time Linker (Cont.)
	Cray MPP Linker
	Cray MPP Linker (Cont.)
	Cray MPP Linker (Cont.)

